
95-865:
Introduction to Predictive

Data Analytics

George Chen

Disclaimer: unfortunately “k”
means many things

Announcements

• Final exam: Tuesday May 8, 1pm, HBH 1002

• Similar format to the quiz (but you’ll get 3 hours)

• Due Wednesday 10:30am: HW2

• My office hours are back to the usual time (Wednesday
3pm-5pm, HBH 2216)

• Due tomorrow: taxes

different room!

Previous Lecture: Topic Modeling

• There are actually many topic models, not just LDA & HDP

• Dynamic topic models: tracks how topics change over time

• This sort of idea could be used to figure out how user
tastes change over time in a recommendation system

• Correlated topic models, Pachinko allocation,  
biterm topic models, anchor word topic models, …

• Could try to see if there are existing patterns for how
certain topics become really popular

What if we have labels?

Example: MNIST handwritten digits have known labels

If the labels are known…

And we assume data generated by GMM…
If the labels are known…

What are the model parameters?

k = # of colors

We can directly estimate
cluster means, covariances

Flashback: Learning a GMM

Step 0: Pick k

Step 1: Pick guesses for cluster means and covariances

Step 2: Compute probability of each point belonging to each of the
k clusters

Step 3: Update cluster means and covariances carefully
accounting for probabilities of each point belonging to each of the
clusters

Repeat until convergence:

Don’t need this top part if we know the labels!

We don’t need to repeat until convergence

And we assume data generated by GMM…
If the labels are known…

What are the model parameters?

k = # of colors

We can directly estimate
cluster means, covariances

What should the label of
this new point be?

Whichever cluster has
higher probability!

(a procedure that given a new data
point tells us what “class” it belongs to)

What should the label of
this new point be?

Decision boundary

We just created a classifier

Whichever cluster has
higher probability!

This classifier we’ve created assumes a
generative model

You’ve seen generative
models before for prediction

Linear regression!

x

y Model parameters: slope m, intercept b

Feature vector 
(1D in this case)

Label  
(1D in this case)

x

y

For specific value of x,
assume y drawn from
Gaussian with mean

mx+b, standard dev 𝜎

Model parameters: slope m, intercept b

Feature vector 
(1D in this case)

Label  
(1D in this case)

Predictive Data Analysis

Training data

(x1, y1), (x2, y2), …, (xn, yn)

Goal: Given new feature vector x, predict label y

A giant zoo of methods

• y is discrete (such as colors red and blue) 
➔ prediction method is called a classifier

• y is continuous (such as a real number) 
➔ prediction method is called a regressor

Example: k-NN Classification

What should the label of
this new point be?

Example: k-NN Classification

What should the label of
this new point be?

1-NN classifier prediction

Example: k-NN Classification

What should the label of
this new point be?

2-NN classifier prediction
Break tie

Example: k-NN Classification

What should the label of
this new point be?

3-NN classifier prediction

We just saw: k = 1, k = 2, k = 3

What happens if k = n?

Generalization of k-NN
classification: weighted

majority voting

GMT Time (June 27, 2012)

06:00 08:00 10:00 12:00 14:0007:00 09:00 11:00 13:00 15:00
0

50Tweet
Rate

News Activity for #Barclays

GMT Time (June 27, 2012)

06:00 08:00 10:00 12:00 14:0007:00 09:00 11:00 13:00 15:00
0

50
#Barclays

will go viral12:03

News Activity for #Barclays

Tweet
Rate

GMT Time (June 27, 2012)

06:00 08:00 10:00 12:00 14:0007:00 09:00 11:00 13:00 15:00
0

50

100

150

Tweet
Rate

News Activity for #Barclays

#Barclays
has gone viral!12:49

#Barclays
will go viral12:03

How we did this: weighted majority voting
Chen, Nikolov, and Shah. A Latent Source Model for Nonparametric Time Series Classification.

NIPS 2013.

Weighted Majority Voting

0.80.10.5

Training data

Red = viral
Blue = not viral

Test data
Election results
Viral: 1.3 votes
Not viral: 0.1 votes

Compute similarities

Weighted Majority Voting

0.80.10.5

Training data

Red = viral
Blue = not viral

Test data
Election results
Viral: 1.3 votes
Not viral: 0.1 votes

Compute similarities

Nearest neighbor

Election results
Viral: 0.8 votes
Not viral: 0.0 votes

Nearest Neighbor Classification

NN Classification Variants
• k-NN classification: consider k most similar training data

to test data point

• Unweighted: when tallying up votes, have each of the k
nearest neighbors have an equal vote of 1

• Weighted: when tallying up votes, use the similarities
that we computed

• Fixed-radius near neighbor classification: consider all
training data at least some similarity threshold close to test
data point (i.e., use all training data distance ≤ h away)
• Once again, can use weighted or unweighted votes

not the same k as in k-means

(terminology: “k-NN classification” by default is unweighted)

How do we choose k?

What I’ll describe next can be used to select
hyperparameter(s) for any prediction method

First: How do we assess how good a prediction method is?

Hyperparameters vs. Parameters

• We fit a model’s parameter to training data  
(terminology: we “learn” the parameters)

• We pick values of hyperparameters and they do not get fit
to training data

• Example: Gaussian mixture model
• Hyperparameter: number of clusters k
• Parameters: cluster probabilities, means, covariances

• Example: k-NN classification
• Hyperparameter: number of nearest neighbors k
• Parameters: N/A

Test data
point

Test data
point

Test data
point

Test data
point

Test data
point

Want to classify
these points

correctly

Training
data
point

Training
data
point

Training
data
point

Training
data
point

Training
data
point

Training
data
point

Training
data
point

Training
data
point

Training
data
point

Training
data
point

Training data

Example: future
emails to classify

as spam/ham
Example: Each data point is an email
and we know whether it is spam/ham

Predict on data
in orange

Train method on data in gray

Training
data
point

Training
data
point

Training
data
point

Training
data
point

Training
data
point

Training
data
point

Training
data
point

Training
data
point

Training
data
point

Training
data
point

Compute
prediction error

50%

Training
data
point

Training
data
point

Training
data
point

Training
data
point

Predicted labels

Predict on data
in orange

Train method on data in gray

Training
data
point

Training
data
point

Training
data
point

Training
data
point

Training
data
point

Training
data
point

Training
data
point

Training
data
point

Training
data
point

Training
data
point

0%

Compute
prediction error

50%

Predict on data
in orange

Train method on data in gray

Training
data
point

Training
data
point

Training
data
point

Training
data
point

Training
data
point

Training
data
point

Training
data
point

Training
data
point

Training
data
point

Training
data
point

0%50%

Compute
prediction error

50%

Predict on data
in orange

Train method on data in gray

Training
data
point

Training
data
point

Training
data
point

Training
data
point

Training
data
point

Training
data
point

Training
data
point

Training
data
point

Training
data
point

Training
data
point

0%50%0%

Compute
prediction error

50%

Predict on data
in orange

Train method on data in gray

Training
data
point

Training
data
point

Training
data
point

Training
data
point

Training
data
point

Training
data
point

Training
data
point

Training
data
point

Training
data
point

Training
data
point

0%50%0%0%
Average error: (0+0+50+0+50)/5 = 20%

Compute
prediction error

50%

Training
data
point

Training
data
point

Training
data
point

Training
data
point

Training
data
point

Training
data
point

Training
data
point

Training
data
point

Training
data
point

Training
data
point

1. Shuffle data and put them into “folds” (5 folds in this example)
2. For each fold (which consists of its own train/validation sets):  

(a) Predict on fold’s training data, test on fold’s validation data  
(b) Compute prediction error

3. Compute average prediction error across the folds

k-fold Cross Validation
Training

data
point

Training
data
point

Training
data
point

Training
data
point

Training
data
point

Training
data
point

Training
data
point

Training
data
point

Training
data
point

Training
data
point

1. Shuffle data and put them into “folds” (k=5 folds in this example)
2. For each fold (which consists of its own train/validation sets):  

(a) Predict on fold’s training data, test on fold’s validation data  
(b) Compute prediction error

3. Compute average prediction error across the folds

not the same k as in k-means or k-NN classification

k-fold Cross Validation
Training

data
point

Training
data
point

Training
data
point

Training
data
point

Training
data
point

Training
data
point

Training
data
point

Training
data
point

Training
data
point

Training
data
point

1. Shuffle data and put them into “folds” (k=5 folds in this example)
2. For each fold (which consists of its own train/validation sets):  

(a) Predict on fold’s training data, test on fold’s validation data  
(b) Compute some sort of prediction score

3. Compute average prediction score across the folds

not the same k as in k-means or k-NN classification

“cross validation score”

Choosing k in k-NN Classification

For each k = 1, 2, 3, …, the maximum k you are willing to try:

Compute 5-fold cross validation score using k-NN classifier
as prediction method

Use whichever k has the best cross validation score

Note: k-NN classifier has a single parameter k

Automatic Hyperparameter Selection

For each hyperparameter setting 𝜃 you are willing to try:

Compute 5-fold cross validation score using your algorithm
with hyperparameters 𝜃

Use whichever 𝜃 has the best cross validation score

Suppose the prediction algorithm you’re using has
hyperparameters 𝜃

Why 5?

People have found using 10 folds or 5 folds to work well in
practice but it’s just empirical — there’s no deep reason

Test data
point

Test data
point

Test data
point

Test data
point

Test data
point

Want to classify
these points

correctly

Training
data
point

Training
data
point

Training
data
point

Training
data
point

Training
data
point

Training
data
point

Training
data
point

Training
data
point

Training
data
point

Training
data
point

Training data

Example: future
emails to classify

as spam/ham
Example: Each data point is an email
and we know whether it is spam/ham

Important: the cross validation score is
trying to predict what the prediction

quality will be on the unseen test data

Our earlier example had a cross validation
score of 20% error

This is a guess at how well the prediction
method should perform on test data
This guess is not always accurate

Different Ways to Measure Accuracy
Simplest way:
• Raw error rate: fraction of predicted labels that are wrong  

(this was in our cross validation example earlier)

In “binary” classification (there are 2 labels such as spam/ham)
when 1 label is considered “positive” and the other “negative”:
• Precision: among data points predicted to be “positive”,

what fraction of these predictions is correct?
• Recall: among data points that are actually “positive”, what

fraction of these points is predicted correctly as “positive”?  
(also called true positive rate)

• F1 score: 2 ⨉ precision ⨉ recall
precision + recall

Naive Bayes
Email spam classification example

1. Flip coin with unknown probability s: 
If heads: new email is spam 
If tails: new email is ham

2. If new email is spam:  
 For each word w in vocabulary: 
 Flip coin with probability pw for whether word w appears
If new email is ham: 
 For each word w in vocabulary: 
 Flip coin with probability qw for whether word w appears

(a generative model)

Each email represented by feature vector saying whether a word is
present or not (for pre-specified dictionary of words)

Whether one word appears has
no effect on whether another

word appears! 
(why model is called “naive”)

How many parameters are there in this example?

Many other ways to
specify a naive
Bayes model

(features need not
be binary)

